- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Obied, Georges (3)
-
Vafa, Cumrun (3)
-
Gonzalo, Eduardo (2)
-
Dvorkin, Cora (1)
-
Law-Smith, Jamie_A P (1)
-
Montero, Miguel (1)
-
Prabhu, Anirudh (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A<sc>bstract</sc> In the dark dimension scenario, which predicts an extra dimension of micron scale, dark gravitons (KK modes) are a natural dark matter candidate. In this paper, we study observable features of this model. In particular, their decay to standard matter fields can distort the CMB and impact other astrophysical signals. Using this we place bounds on the parameters of this model. In particular we find that the natural range of parameters in this scenario is consistent with these constraints and leads to the prediction that the mean mass of the dark matter today is close to a few hundred keV and the effective size of the extra dimension is around 1–30 μm.more » « less
-
Obied, Georges; Dvorkin, Cora; Gonzalo, Eduardo; Vafa, Cumrun (, Physical Review D)
-
Gonzalo, Eduardo; Montero, Miguel; Obied, Georges; Vafa, Cumrun (, Journal of High Energy Physics)A<sc>bstract</sc> We consider cosmological aspects of the Dark Dimension (a mesoscopic dimension of micron scale), which has recently been proposed as the unique corner of the quantum gravity landscape consistent with both the Swampland criteria and observations. In particular we show how this leads, by the universal coupling of the Standard Model sector to bulk gravitons, to massive spin 2 KK excitations of the graviton in the dark dimension (the “dark gravitons”) as an unavoidable dark matter candidate. Assuming a lifetime for the current de Sitter phase of our universe of order Hubble, which follows from both the dS Swampland Conjecture and TCC, we show that generic features of the dark dimension cosmology can naturally lead to the correct dark matter density and a resolution of the cosmological coincidence problem, where the matter/radiation equality temperature (T~ 1 eV) coincides with the temperature where the dark energy begins to dominate. Thus one does not need to appeal to Weinberg’s anthropic argument to explain this coincidence. The dark gravitons are produced atT~ 4 GeV, and their composition changes as they mainly decay to lighter gravitons, without losing much total mass density. The mass of dark gravitons ismDM∼ 1 − 100 keV today.more » « less
An official website of the United States government
